

Assessment of the Influence of Relative Humidity on Rainfall generation, in the tropical region of Imo State, South Eastern Nigeria.

Uja, E.U¹, Okorafor, O.O², Nwakuba, N.R³, Asonye, G.N⁴, Chikwue, M.I⁵

^{1,2,3,4,5}Department of Agricultural and Bioresources Engineering, Federal University of Technology, P.M.B 1526, Owerri, Imo State, Nigeria. Imo State, Nigeria.

Date of Submission: 18-02-2024

ABSTRACT - This report assesses the influence of the climatic factor of Relative humidity on rainfall generation for a period of eleven years (2006-2016) in the tropical region of Imo State, South Eastern Nigeria. The region has continually been noted for intense heat waves and the rains that fall are considerably erosiveleading to destruction of lives and properties). In the study ,the monthly rainfall amounts, as dependable variable were correlated and regressed with the monthly relative humidity values, using the IBM SPSS Statistics Software. The rainfall amounts correlated positively with the relative humidity values in all the years (2006-2016), with an average R^2 value of 52.90%. In the light of these observations, the relative humidity has been unfolded to contribute to about 53% to changes in the rainfall amounts through the years, (2006-2016) .In the light of this, relative humidity could possibly be seen as an index for the evaporation of moisture into the atmosphere that periodically fall as rains. The more the relative humidity, the more the likeliness of rainfall and vice versa. The best single parameter predictor model for the rainfall amounts was a non linear, exponential model: 8.87E-6 + 202 Rel. humidity 2006, with a standard error of estimate ,SE, value of 0.534. According to the model, a change in the Relative humidity contributes about 68.6% to changes in the Rainfall amounts.

Keywords: climatic factor, relative humidity, influence, rainfall, generation.

Date of Acceptance: 26-02-2024

I. INTRODUCTION

The influence of changes in the climatic condition has continued to demand global attention , as experiences of heat waves in the tropics by humans, soil and environment strikes alarming proportions.[1];[2] It is in the light of this that the vulnerability of the tropics is being considered. As a result of this heat waves in the area under study, erosion and flooding remain common phenomena and the people have sleepless nights. The zone has the fifth highest concentration of active gullies in the country, Nigeria. [3]; [4]; [5] The erosion experienced in the zone has often been attributed to the predominant soil types in the zone which consists of 40% to 60% silt contents.[6] Nevertheless, the heat waves in the zone cannot be overemphasized and ought to be given considerable attention, as the greater the heat waves, the more likely the evaporation of moisture into the atmosphere and also the more likely an ensuing rainfall.[7];[8];[9];[10]It is really on this wise that the study was chosen.

The studywill attempt to unfold the role played by relative humidity in the evaporation of moisture into the atmosphere, which latter fall as rain. This stands out as the main objective of the study .It is being envisaged the result of the findings will unravel the need to embrace policies that will humidify the atmosphere rather than heating it up. Heating up of the atmosphere has been alarmed upon because of heat related damages to the environment , soil and ecosystems[11]The danger of loosing soil has also been greatly

stressed, as it takes about a thousand years to form a soil profile.[12]

II. MATERIALS AND METHODS 2.1 The Study Area

The study area lies between Latitude 4^045^1 and 6^015^1 N and Longitude 6^030^1 and 8^09^1 E. The area is bounded in the East by Cross River State, in the West by River State, in the South by Akwa Ibom State and in the North by Anambra and Enugu States.

Year	Januar	Februa	Mar	April	May	Jun	July	August	Septe	Octo	Nove	Dece
I cai				лрш	Iviay		July	August	-			
	У	ry	ch			e			mber	ber	mber	mber
2006	82	80	78	78	82	84	87	87	88	85	79	68
2007	44	77	74	79	77	83	85	87	87	85	83	79
2008	52	55	75	78	80	83	85	86	84	80	78	71
2009	77	78	61	77	79	81	87	88	85	81	72	73
2010	75	79	78	79	84	86	86	88	88	85	83	74
2011	60	82	82	78	81	85	86	89	86	84	80	66
2012	62	81	77	80	79	85	88	86	87	84	82	70
2013	-	77	82	81	84	86	89	90	88	85	83	74
2014	78	78	80	80	82	83	87	89	88	84	83	69
2015	58	82	80	78	81	86	87	89	86	82	80	39
2016	56	70	82	77	81	84	87	87	86	82	79	69

Table 1: The Monthly Relative humidity (%) of Imo State

[13]

 Table 2: The Monthly Rainfall Amounts (mm) of Imo State

Year	Janu	Feb	Marc	April	May	June	July	Aug	Septe	Octob	Nov	Dece
I cui	ary	rua	h	p	1.149	0 and	U ar j	ust	mber	er	emb	mber
	ary		11					ust	moer	01		moer
2006	70 5	ry 49	100.1	104	157.2	240	207.6	222	527 (202.2	er	0.0
2006	78.5	48.	108.1	104.	157.3	349.	397.6	232.	537.6	303.3	33.3	0.0
		4		1		9		1				
2007	TR	7.4	57.7	62.1	260.9	397.	485.4	509.	303.0	180.2	42.7	9.6
						3		0				
2008	13.6	0.0	117.5	215.	209.7	473.	630.2	289.	449.8	382.9	9.2	26.2
				4		9		6				
2009	38.6	71.	71.2	242.	441.5	239.	497.9	539.	485.3	236.8	115.	0.0
		4		8		0		2			4	
2010	0.0	62.	34.1	164.	297.5	255.	252.0	453.	258.4	306.6	184.	1.6
		6		2		2		8			0	
2011	0.0	133	84.4	114.	528.3	192.	305.2	506.	366.0	241.2	49.7	24.8
		.7		8		0		7				
2012	TR	74.	22.1	158.	249.2	284.	430.2	316.	483.1	178.9	113.	0.0
		1		0		2		0			2	
2013	-	40.	130.9	190.	253.2	188.	254.1	409.	279.0	101.1	48.6	132.4
		0		5		7		1				
2014	0.0	21.	110.2	157.	289.4	236.	139.3	336.	355.6	220.7	91.3	30.0
		4		0		2		3				
2015	12.4	72.	61.0	61.4	236.6	364.	325.8	359.	352.9	324.3	78.1	0.0
		2				7		2				
2016	0.0	29.	192.5	143.	157.4	272.	378.1	409.	423.8	144.7	12.2	TR
		4		9		6		4				
101	l		l	l	l	-	l	I	I			II

[13]

2.2 Method of Data Analysis

The analysis was done using the IBM SPSS Statistics software[14]. The Rainfall

Amounts (mm), as dependable variables were correlated with the Relative humidity values (%), as independent variables. The strength and nature

3.1 Results

of relationships were noted. Then the correlations that were significant at 0.05 (1-tailed) were selected and regressed upon using both linear and non-linear (curve estimation) methods. Also noted were the strength and nature of the relationship.. The respective model equations were gathered. The model equations were then observed to identify the model equation that comparatively predicted the Rainfall Amounts, with least error of estimate (SE).

III. RESULTS AND DISCUSSIONS

Table 3: Results of Correlation analysis of the Relative humidity (%) and Rainfall amounts (mm)

Year	Correlation	P-Value*
2006	0.856	0.000
2007	0.673	0.012
2008	0.682	0.010
2009	0.754	0.004
2010	0.894	0.000
2011	0.607	0.024
2012	0.835	0.001
2013	0.693	0.009
2014	0.739	0.005
2015	0.701	0.008
2016	0.852	0.001

*Correlation is significant at 0.05 level (1-tailed)

Threshold value of the Relative humidity was 78%.

Table 4: Strength and nature of relationship between Rainfall Amounts (mm) and Relative humidity(%)

Year	R	Nature of the Relationship	\mathbf{R}^2	Strength of the Relationship	
2006	0.856	Positive	73.27	Very Good	
2007	0.673	Positive	45.29	Almost Average	
2008	0.682	Positive	46.51	Almost Average	
2009	0.754	Positive	56.85	Average	
2010	0.894	Positive	79.92	Very Good	
2011	0.607	Positive	36.84	Moderate	
2012	0.835	Positive	69.72	Good	
2013	0.693	Positive	48.02	Almost Average	
2014	0.739	positive	54.61	Average	
2015	0.701	positive	49.14	Almost Average	
2016	0.852	positive	72.59	Very Good	

Table 5 : Model Gathering (Relative humidity versus Rainfall amounts)

Year	Model Equations	\mathbf{R}^2	Standard error of estimation
2006	Exponential:	0.686	0.534
	Rainfall amount=8.87E-6 +202Rel. humidity 2006		
2007	Exponential:	0.386	1.254
	Rainfall amount=3.434E-6 + Rel. humidity 2007		
2008	Exponential:	0.532	1.086
	Rainfall amount=0.018 +0.115 Rel. humidity 2008		

2009	Exponential:	0.489	0.693
	Rainfall amount=0.242 + 0.085 Rel. humidity		
2010	Power:	0.771	0.816
	Rainfall amount=6.524E-47 + 25.176 In(Rel. humidity		
	2010)		
2011	Europontial	0.650	0.606*
2011	Exponential:	0.030	0.000
	Rainfall amount=0.004 + 0.129 Rel. humidity 2011		
2012	Power:	0.657	0.577
	Rainfall amount=4.497E-31 + 16.964 In (Rel. humidity		
	2012)		
2013	Exponential:	0.393	0.596
	Rainfall amount=0.067 + 0.092 Rel. humidity 2013		
2014	Exponential:	0.606	0.620
	Rainfall amount=0.003 + 0.131 Rel. humidity 2014		
2015	Exponential:	0.783	0.535
	Rainfall amount=0.011 + 0.116 Rel. humidity 2015		
2016	Exponential:	0.583	0.801
	Rainfall amount=0.000 + 0.171 Rel. humidity		

* Rain Amount=8.87E-6 + 202 Rel. humidity 2006 is hereby selected.

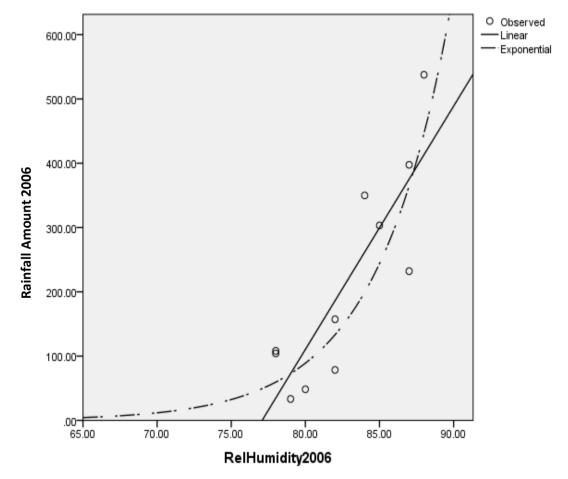


Figure 1: Rainfall amounts (observed and predicted) versus Relative humidity.

3.2 Discussions

Tables 1 and 2 showed that the study had been carried out within the following ranges of the climatic factors: Relative humidity (44% to 90%) and Rainfall amounts (7.8mm to 630.2mm). The results from the correlation analysis carried out, as indicated in Tables 3 showed that the Rainfall amount correlated positively with the Relative humidity in all the years of study. Another notable observation as postulated in Table 4 was that the strength and nature of the relationship between the Rainfall amounts and the Relative humidity throughout the period (2006 to 2016) reviewed was more than 80% above average. Even in the few cases where the relationship appeared to be less, the relative humidity contributed about 50% changes in the rainfall amount.

Through the regression analyses carried out using linear and non-linear (Curve fit) methods as could be seen in figure 1 as well as in the appendices 1 to 10, it was noticed that increases in the relative humidity brought about increases in the rainfall amounts. Nevertheless the increase in the rainfall amounts became quite profound after a threshold value of 78% Relative humidity was reached. The best single parameter predictor model for the rainfall amounts was a non linear, exponential model: 8.87E-6 + 202 Rel. humidity 2006, with a standard error of estimate .SE, value of 0.534. It predicted the range for the rainfall amounts to be 5.88mm to 629.41mm while the observed rainfall amounts ranged from 7,8mm to 630.2mm.

IV. CONCLUSIONS

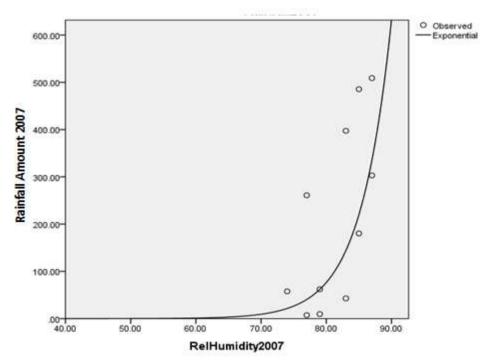
The influence of relative humidity on rainfall generation was stressed. Relative humidity has been seen like an intermediary that attracts, gather and send moisture from seas and land masses into the atmosphere, which periodically fall as rain. In this study, relative humidity has not only correlated positively with the rainfall amount but has also contributed to not less than 53% changes in the rainfall amounts.

REFERENCES

 Uja, E.U., Okereke, N.A.A., Nwandikom, G.I., Madubuike, C.N., & Egwuonwu, C.C.,(2019). Assessing the Influence of the Climatic factors on the Maximum Dry Density of Soils: Effects on Erosion, Futo Journal Series(FUTOJNLS), Volume-5, Issue-1,e-ISSN:2476-8456 p-ISSN-2467-8325.

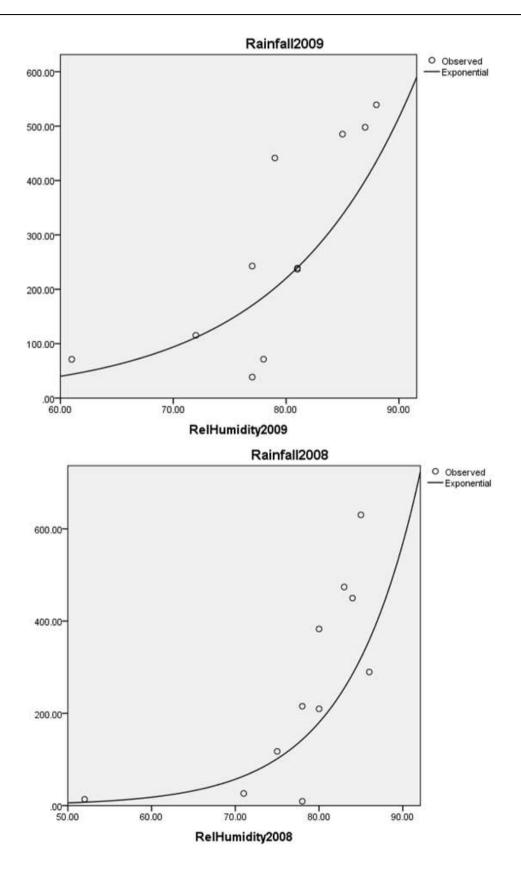
- [2]. Varallyay, G., (2010) The impact of climate change on soils and on their water management. In: Agronomy Research 8 (Special Issue II). 385-396,2010.
- [3]. Uja,E.U,Equere,U.I,& Popoola,J.O., (2019) Remote Sensing, A Tool for Erosion Study : A Case Study of Nekede and Environs, InternationalJournal of Advanced Academic Research | Sciences, Technology and Engineering, ISSN:2488-9849,Vol.5, Issue 12.
- [4]. Uzoigwe, L.O.; Chukwuma, E.C.; Samuel, C. and Maduakolam, S.C. Environmental Monitoring and Assessment of Gully Erosion: Causes, Effects and Remediation in Nigeria. Proceedings of International Training Workshop on Effective Watershed Management for Control/Mitigation Environmental in Nigeria. Federal University of Technology, Owerri Nigeria, ISBN: 978-978-54526-6-2, 2016.
- [5]. John, V.A. Effective Climate change on Coastal Erosion and flooding Proceeding of the 1st International training workshop of the IES, FUTO, ISBN: 978-978 54526-6-2 R. Atlas Ent., 2016, pp. 45-57.
- [6]. Uja, E.U.,Okereke, N.A.A., Nwandikom, G.I., Madubuike, C.N., & Egwuonwu, C.C.,(2020). Assessing the Influence of the Climatic factors, (CF) on the Silt Contents of Soils: Effects on Erosion, International ResearchJournal of Engineering and Technology, (IRJET), Volume:07 Issue:01,e-ISSN:2395-0056, p-ISSN-2395-0072, pp. 807-813.
- [7]. Romeo, M., & Goodcares, M., (2017). The Effect of Temperature and Relative humidity on Rainfall in Gokwe Region, Zimbabwe: A factorial perspective. International Journalof Multidisciplinary Academic Research, Vol.5.No.2,ISSN: 2309-3218.
- [8]. Xiaopeng, C., & Xiaofan, L., (2006). Role of Surface Evaporation in Surface Rainfall Processes. In: Journal of Geophysical Reaearch, DOI:10.1029/2005 JD006876.
- [9]. Aganbi, B. M and Bello. "On the Analysis of trend of temperature across Nigeria": A signature of global warming .In: Proceeding of 2nd International training workshop of the Institute of Erosion Studies (IES), FUTO, 2016.
- [10]. Beckley, M.O.Application of Hydrological Data in Erosion and Flood

Mitigation, Proceedings of International Training Workshop Effective on Watershed Management for Environmental Control/Mitigation in Nigeria, Federal University of Technology, Owerri Nigeria, ISBN: 978-978-54526-6-2, 2016. p. 123.

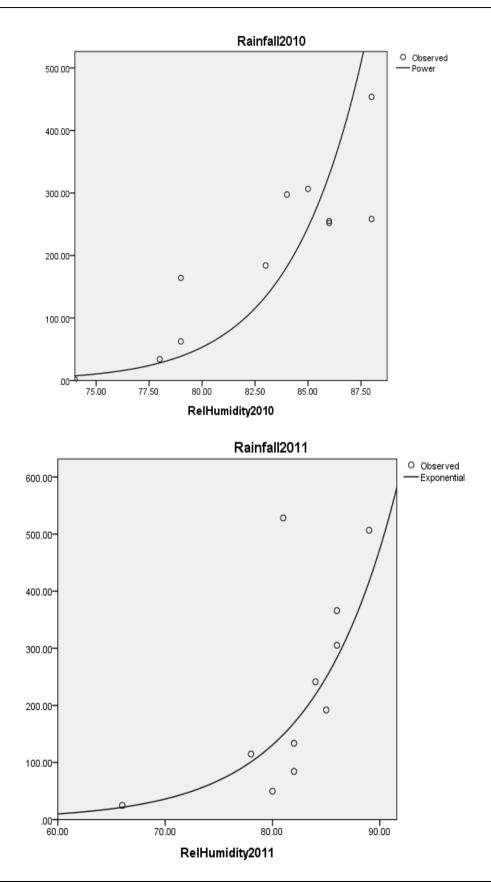

[11]. Dumanski, J.,& Peiretti, R.,(2013). Modern Concepts in Soil Conservation. International Journal of Soil and Water Conservation, Vol. 1, No.1, ppp. 19-23.

APPENDICES

[12]. Biplab, T., & Subhechya, R., (2019). Formation of Soil. Thermatic Journal of Geography Formation of Soil, Vol-8-Issue-8,ISSN:2277-2995.


- [13]. Nigerian Meteorological Agency (NIMET), (2016).
- [14]. Breiman, L. Statistical Modelling: The two cultures. Statistical Science 16(3): Keil Publisher, 2001, pp.199-231.

APPENDICES



Appendix 1: Rainfall amount 2007 versus Relative humidity 2007

